
MATH 8702 TOPICS IN APPLIED MATH:

BIFURCATION THEORY
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FIGURE 5. Graphs of T / V  against wave height for three sets of periodic Naves with 
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FIGURE 6. Periodic wave profiles for h = 2, = 3: extreme wave with H = 6.489. c = 

h =  1 :  

6.845 : 
also H = 6, c = 6.748; H = 5, c = 7.110; H = 4, c = 6.906; and H = 1 ,  c = 3.444. 

in dimensional units. Note that there is an appreciable variation of T/V in the range 
of vorticity - 1 < 5 < 1. The variation with wave amplitude for cases with h = 1 is 
shown in figure 5 .  This shows the importance of the linear ratio, relative to the 
amplitude variation. The substantial variation of the T/V ratio is not usually 
allowed for in the analysis of field and experimental wind waves. In  such analysis 
linear irrotational flow results are normally used to  calculate quantities such as 
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F l G l r R R  7 .  ( a )  Profile of a p u w  rotational wave (9  = 0). with 5 = 1 ,  H = 2.45 and c = 1.153. 
( h )  Sketch of a possible limiting nave, for zero gravity. 

energy spect,ra from measurements of surface elevation. In  strong winds the vorticity 
near the surface, may often be strong enough to  make a suitable correction 
significant) for t>he short,er waves. The dimensionless parameter h defined in (4.2) 
shows tha t  for waves of given wavenumber the effect of vorticity is less in shallow 
water, whcre the fact>or tanh (kh)  is smaller than in deep water. 

For values of vorticity larger than 1 ,  Simmen bz Saffman (1985) found waves with 
bizarre shapes and high phase velocities. Even stranger waves are found in finite 
water depths. ,4 selection of wave profiles for y = 3, h, = 2. are shown in figure 6. For 
water of this depth surface waves are often treated as deep water waws  since 
tanh ( 2 )  = 0.96, however as  figure 6 shows all the large waves have flat troughs which 
are clearly limited by the presence of tho bed. Even for much greater values of h, this 
phenomenon is evident. 

It appears tha t  the volume of water specified in a computat.ion is the quantity 
most relevant in determining the range of large waves found. For finite tlcpt>h of 
water bhc condit'ion of zero mean level signifies a constant' area 27ch in the 

Figure 1. Families of traveling water waves numerically computed by Da
Silva and Peregrine [1]. Left: these solutions limit to an extreme wave with
a corner at its crest; Right: Along another branch, they find overhanging
waves that appear to limit to a solution wave where the water region sepa-
rates into a rigidly rotating ball superposed on a flat line.

Many problems in mathematics boil down to solving an abstract operator equation of
the form

F (u, λ) = 0,

where u is an unknown lying in some Banach space, and λ ∈ R is a parameter. Any PDE
can be expressed this way, with the corresponding F being a mapping between infinite-
dimensional Banach spaces.

Often, these types of equations have a “trivial solution” or a family of trivial solutions.
For example, suppose that

F (0, λ0) = 0 or F (0, λ) = 0, for all λ ∈ R.

Bifurcation theory offers a robust strategy for finding new, nontrivial solutions. First, we
look for a curve of nontrivial solutions that emanates from a trivial solution, and then we
continue the curve as far possible. The initial stage is called local bifurcation, while the
more subtle step of extending the curve is called global bifurcation. Together, they comprise



an extremely powerful tool in nonlinear functional analysis. Notice that the global curve
can wander far from the trivial solution, and so we can hope to see very wild behavior as
we follow along it.

Perhaps the most famous application of global bifurcation theory is the celebrated res-
olution of the Stokes Conjecture. In 1880, Stokes formally constructed a family of surface
water waves (that is, solutions of the 2-d irrotational and incompressible free boundary Eu-
ler problem) that are periodic. He claimed that the tallest such wave, called the extreme
wave, must have a 120◦ corner at each crest. It took over 100 years, and a remarkable
bifurcation theoretic proof, to rigorously confirm this fact. A major subject of current
research is the existence of even more dramatic solutions, such as the overhanging waves
pictured above.

Course description. The objective of this course is to give an introduction to bifurcation
theoretic methods, particularly as they apply to elliptic PDEs. We will study both local
and global theory, but the emphasis will be on the global side. We will give a thorough
treatment of the analytic global bifurcation theory of Dancer, and its refinement by Buffoni
and Toland. Mathematically, this machinery exploits deep facts from functional analysis
and properties of (real and complex) analytic varieties. As a concrete application, we will
apply these techniques to find large-amplitude traveling water waves.

Textbook. The main references for the course will be

Bifurcation Theory: An Introduction with Applications to PDEs by H. Kielhöfer
Analytic Theory of Global Bifurcation by J. F. Toland and B. Buffoni.

Prerequisites. A year of graduate analysis. Prior exposure to the material in PDE I is
ideal but not required.
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